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Convolutional codes chosen for greatest free distance or lowest error probability
on a binary channel are not necessarily good codes for an M-ary channel. A rate
k/v coder generates a 2'-ary output symbol for each k input bits. If a binary
channel is used, the appropriate measure of distance between these symbols is
Hamming distance (number of bit disagreements). But if either a 2'-ary orthogonal
channel, or a 2"-ary simplex channel is used, the distance between any two dif-
ferent symbols is unity (number of symbol disagreements). Other distance mea-
sures are appropriate on other M-ary channels. Good rate 1/2 and 1/3 codes have
been found by computer search for the orthogonal 4-ary and 8-ary channels. The
result is a reduction of error probabilities by about a factor of two below previ-
ously tabulated codes. The computer technique used is described. At a fixed
constraint length, further performance improvement results from increasing v, up

to a limit at v = K (constraint length) on the orthogonal 2*-ary channel.

1. Introduction

Good codes have codewords that are “far apart” in sig-
nal space. When a codeword is a sequence of antipodal
signals designed for a binary channel, the Hamming
distance defines “far apart.” Convolutional codes with the
largest possible minimum Hamming distance between
any pair of codewords (free distance) have been tabu-
lated for rate 1/2, 1/3, and 1/4, for constraint lengths up
to 14 (Ref. 1). But Hamming distance is not the correct
measure of distance in many signal spaces; those systems
that use a larger number of symbols, M > 2, have a wide
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variety of distance measures. The simplest of these are
the orthogonal and simplex distance measures—the dis-
tance from a symbol to any other symbol is one, and the
distance to itself is zero. Other possibilities are biorthog-
onal, where the distance from a symbol to its negative
is twice all other distances; phase shift keying, where two
dimensional Euclidian distances between points on a
circle are used; and combined phase and amplitude keyed
systems, with more complicated distance measure. We
will concern ourselves only with symmetric systems; that
is, the set of distances of all symbols from symbol x; is
independent of i.
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Il. The Convolutional Coder

A convolutional coder consists of a shift register to hold
a short history of the input, and a group of mod-2 adders
(parity generators) to compute output symbols as a func-
tion of past and present inputs (see Fig. 1). Inputs are
shifted into the register in groups of k bits; the register
holds K such groups, where K is called the constraint
length of the coder. The number of binary symbols gen-
erated per input of k bits is termed v. We extend the
concept of the coder to let these v bits select one of
M = 2¥ channel symbols, We make no attempt to gen-
eralize the relation between » and M.

The coder rate is k/» bits per binary symbol, or k bits
per M-ary symbol; that is, each k input bits result in the
output of one 2" = M-ary channel symbol. Then an input
of length L (groups of k bits) causes an output of length
L + K — 1 (symbols).

1. Distance Between Code Words

Since the coder uses only linear mod-2 adders, an all-
zero input corresponds to an all-zero output of binary
symbols, which selects a symbol sequence all-x,. Each
codeword corresponding to a length L input (with zeroes
before and after) differs from a sequence of x,’s in at most
L + K — 1 places. Then, with L = 1, an immediate upper
bound on the minimum distance between codewords is

dy < K+ diax (1)

where d.. is the greatest distance from x, to another
codeword. This bound is often quite loose. For example,
using M = 4 with distances 0, 1, 1, 2 corresponds to the
familiar Hamming distance on a binary channel with
symbols grouped in pairs. Since dun.x =2, our simple
bound is

d, < 2K

A much better well-known bound (Ref. 2) for a binary
channel is

L

@gmmL;;ﬂK+L_n] (2)
. L>o L=

For example, at K = 8 the bounds are 16 and 10, respec-
tively.

We can informally estimate d; by assuming the coder
generates K outputs which are random and equally likely
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to be either (a) any of M symbols, or (b) any of M — 1
symbols different from x,. That is,

(a) dfzK'l:in[xohxﬂ:l/M l
o =[] /o)

Then in our example (K =8, distances 0, 1, 1, 2) we
would estimate

(3)

0+1+1+42

(a) df~ 4 K:8
1
(b) dfz#-K:lo.’i

We conjecture that for any symmetric distance measure,
and large enough K, (3b) is an upper bound on d;, though
for small K (e.g, K=1) it is obvious that the greater
bound d; < K-d,,., can be achieved. We further con-
jecture that a d; at least as great as (3a) can always be
achieved, even for large K.

IV. Finding Codes With Large Free Distance

In the last section we showed how to estimate the free
distance of a good code. In this section we describe a
computer technique for finding codes that meet or nearly
meet this estimate. We will consider only orthogonal and
simplex symbols—all distances are one, and the estimate
(3b) is the same as the bound (1); d; < K.

We will represent the connections from the shift regis-
ter to the adders by v vectors of kK bits; these are called
connection vectors g, g,, *+, gv. A one in bit i of g; repre-
sents a connection from the ith shift register stage,
1 <i < kK, to the jth adder. The output of the jth adder
after the nth bit of data input x(n) is

7.8
Sin) =gmx =3 gi(i)x(n—i+1) (mod2)
7 (4)
The data are convolved with the connection vectors (code

generators or generating polynomials), hence the name
convolutional code.

To find good codes of short constraint length, we pro-
pose to test all possible values of the connection vectors.
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For K=8,k =1, v = 2 (code rate R, = 1/2), the number
ot possibilities is

N = 2fv = 910 = 65536

However, many of these are duplications. We may wish
to check each possibility to see if its reflections have
already been considered before proceeding to evaluate
the free distance and other properties.

An obvious way to measure free distance is to com-
pute the distance of all codewords from the zero code-
word, and take the minimum. This procedure is not
effective, however, because there are an infinite number
of codewords to test. We can modify the procedure to
check distances of all codewords generated by inputs of
length £ < L,,.x. But then we have to consider what value
of L. is sufficient; a proven bound on the sufficient Lyax
is prohibitively large (Ref. 3). But experience shows that
Luax = kK (bits) is probably sufficient (at least for orthogo-
nal distance measure). Then there are 2-m=-1 = 128 inputs
to consider for each code in our example. For all codes,
the total number of inputs to check is 2KV* Lmax=t = 223,
Each requires the calculation of up to W(kK + Lpex — 1) =
30 output bits, by adding kK = 8 bits modulo 2. This
makes about 2! = 2 billion elementary operations. For
K = 12 this figure becomes about 2+ = 102,

But all is not hopeless. Suppose we wish to search for
codes with d; > d,,;». Use a program that starts checking
with short inputs, and gives up on a code as soon as any
distance is less than d,,;,. For example, we hope to meet
the bound d; = 8 in the K = 8 example, so set d,,;, = 8.
The first input to try is a single one (---010---). The
output will just be K groups of » bits, one from each
connection vector. If any group of v bits is all zero, the
distance will not equal K, otherwise it will. So there are
(2" — 1)* codes that pass this first step, out of 2"% total
tested. In our example, 6561 codes survive (about 10%).
In 2%« kK + kK = 2%* = 4 million elementary operations,
the bulk of the task has been eliminated. Less dramatic
reductions are made for successively longer inputs. To
eliminate a large memory requirement, the loop on input
lengths should be within the loop on codes. Any code
that survives through £ = L, is printed. Comparisons
can then be made between the codes generated to deter-
mine which are better by some other criteria.

Rather than continuing the procedure through a large
Linax which is felt to be sufficient, it may be useful to stop
with a moderately small L,.,, and send the surviving
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codes to a true free distance computing algorithm; several
effective algorithms are known (Refs. 1, 4, and 5).

V. Evaluating Other Code Properties

Associated with every convolutional code is a transfer
function® (Ref. 6)

T(D,N,L) = $ $ 3" a;; D'NL! (5)

i=1j=11=1

where each term represents a;;, inputs of length £, with
codewords at distance i from the all-zero codeword, and
differing from the all-zero input in j bits. The transfer
function is useful for evaluating bounds on the first event
error probability Py and the bit error probability P
(Ref. 6). It is shown that

Py < T(D, N, L)lN:l,L:l, D=0,
(6)
3T(D,N, L)

aN N=1.L=1,D=Dy

Py <

where for a stationary channel
Dy = 3 Ply.|x)*Ply )" < 1 ™
™

for {y.} the set of channel outputs, and x, and « the
correct and incorrect input symbols, separated by a unit
distance.

The computer procedure described in the preceding
section is useful in that all coefficients of terms of
T(D, N, L) with exponents of L less than or equal to
L...x can be exactly calculated with little extra computa-
tion. Then P, and P; can be estimated, though not
necessarily bounded.

Since there are several codes with a maximum value of
d;, we must choose between them by other considerations,
such as: (a) minimum P, as D,— 0; (b) minimum Py
as D, — 0; (¢) minimum P, at some chosen value of D;
(d) minimum P, at some chosen value of D,. It is often
possible to find a code which is best or almost best on
all these conditions over a wide range of D,.

FORTRAN subroutines, listed in the appendix, have

been written to carry out the evaluation of T(D,N, L),
and Pz and Py, for a list of values of D,. The subroutine

1Differs from Viterbi’s representation in the meaning of the expo-
nent of L.
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EVAL is set up to return without output as soon as any
distance is less than the supplied value of M, or to return
the new d; in variable M if d; > M; so in checking a list
of possible codes, M can be initially set small (even zero)
and the program will print all codes with d; at least as
great as the d; of the previously printed code.

VI. Results

For K < 8 there are many rate 1/2 codes with d; = K
on the 4-ary orthogonal channel. For K > 9, there are
none with d; = K.

Table 1 lists the best codes found (in terms of Py for
D, < 04), along with some previously known codes
(designed for the binary channel). The leading terms of
the error probability estimates are also listed in Table 1.
Figure 2 is a graph of the estimates of Py versus D, for
all the codes in Table 1. Notice that the previously known
K = 11 code is worse than either of the K =10 codes.

Codes with d; = K are much more abundant for v > 2;
but the number of codes to check is also much greater.
At K=8, v =3 (rate 1/3) there are 2" = 16 million
codes to check; the first distance check with input
+--010--- only brings this down to (2"—1)¥ =58
million. But we can find plenty of good codes without
checking these by building on the rate 1/2 codes. If g,
and g, form a rate 1/2 code with free distance d;, then the
addition of any g, forms a rate 1/3 code with free dis-
tance > d; on the 8-ary channel. If the bound was met
at v = 2, it will be met at y = 3; if it was not met at » = 2,
it may be improved at v = 3. And many good rate 1/3
codes will also be good rate 2/3 codes. Similarly, good
codes are easily found for the 16-ary orthogonal channel
at rates 1/4, 2/4, and 3/4.

The rate 1/3 codes in Table 2 were found by taking
g, and g, from the best rate 1/2 code, then trying all
values of g, to find the best. The resulting bit error
probabilities are compared with those of previously tabu-
lated codes (Ref. 1) in Fig. 3. Notice that the best K =4
code found by this procedure is not quite as good as the
one from Ref. 1.

We can hypothesize a best possible rate 1/v code by
assuming that every non-zero data sequence in the coder
will result in an output different from the zero output.
Then the distance of any codeword caused by a length £
input (2 < K) will be K + £ — 1. Thus the transfer func-
tion of the code will be
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T(D,N,L) = DANL + D5+IN*L¢ + D¥+%(N* + N9)L?
+ DE3(N? -+ ON® + N4)L+ + -

= DK[NL + 3 D ‘2(2 B ;) Nf']

1=2 ji=2 7

+ terms with higher £ (8)

We can continue to estimate Py and Pj by truncating the
transfer function to £ < Ly, = K; thus we will have a
comparison between our codes and these ideal codes.
We see that

X L (L—2
PE%Dgf[l + ZD5'12<7~2>]

=2 ji=2
e
= D{)"\:l + D, Z(2D0)“2]
1=2
~ DE[1 + D, + 2D + 4D3 + 8D} + -]
©)

and

2
9D, + 5D + 12D% + 28D% + - -]
(10)

0

For a fixed constraint length K, these codes can
actually be achieved if v is allowed to increase sufficiently
(this corresponds to an exponential increase in bandwidth
when using an orthogonal signal set of size 2”). In fact,
these codes are the “orthogonal tree codes” of Ref. 7
with v = K. Each connection vector has a single one;
that is, the v-bit symbol number is just taken from the
last K input bits, with no mod-2 adders needed (see
Fig. 4).

Figure 5 shows how close our rate 1/2 and 1/3 codes
come to this idealization, on the basis of P,. Notice that
at K =3, v =3 these achieve the idealization, but for
large K, miss by more than 10% of D,.

VIl. Application to Noncoherent MFSK

A channel with random phase disturbances used with
multi-frequency-shift-keying is described in the literature
(Refs. 8, 9, and 10). From the channel output statistics
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we can calculate D, as a function of the predetection
signal-to-noise ratio, ST/N, = o*/2. When frequency m
is transmitted, the receiver outputs are r,, 75, - -, ry, where

) § T; exp ( - g-) , if "

rm ol . )
lrm exp < —5 ?> Li(arn), if j=m

Then we can calculate D, from'Eq. (7):

p(rs)

Do = fp(r)plra)dridrs, j~m

O e

(12)

Notice that D, does not depend on M, the number of
frequencies (symbols). By using Taylor series we can
compute an asymptotic value for small a:

ot ST \? ST
D, =~ exp ~ 1)~ P| ~ N, , V(.«l

Using I,(x) — exp (x)//2xx, we find for large a:

Vr o? _\/n—ST ST ST
D(]%?aexp T mexp 5N, )’ No»l

A numerically calculated curve of D, versus ST/N, is
shown in Fig. 6. When using this channel with small
ST/N,, we will repeat each symbol n times (extend the
tone duration to nT), to bring D, down to

ST \2 ST
DO—DoweXp[-—n<~2VO> :l, "N—O<l

We will use a rate 1/v coder to send one bit per branch,
at a bit rate of 1/(nT) bps. From a specification of
aceeptable bit error rate and a chosen code, we can
choose D,, and hence determine the required value of
the product n(ST/2N,)>.

13)

For example, if we need P, <102, and we wish to
use M =4 frequencies and constraint length K =7,

Fig. 2 indicates that D, < 0.25 will suffice. This requires
n(ST/2N,)* > 1.39. Now if we are constrained by power
to ST/N, = 0.2, then we must use n = 139 or more. The
resulting data rate is R = 1/139T bps, compared to the
wideband capacity (Ref. 8)

S ST/N,

C=FNTz " 23 ST/Ny)

= 0.0262/T bps

for an estimated code efficiency of

R 1

T~ 139-00262 = 0275

(See Ref. 9 for some actual simulated code efficiencies.)

Can we improve on this? Suppose we keep K = 7 fixed
and allow » to increase to K, and M to increase to 2¥ =
128 frequencies. The ideal code (v = K) performance
from Fig. 5 indicates that D, < 0.324, or n(ST/2N,)*
> 1.13 will suffice. Keeping ST/N, = 0.2, we need n =
113, for R = 1/113T, and R/C = 0.338. Thus, by allow-
ing bandwidth expansion, without necessitating a more
complicated decoder, we improve the rate by 139/113 =
1.22. Furthermore, the coder is simplified to just a K-bit
shift register, with parallel outputs going to an M-ary
transmitter. However, the increased bandwidth necessi-
tates a more complicated receiver and demodulator.

VIIl. Conclusions

The bounds on P, and P;; from Ref. 6 do not converge
for D, > 0.5, and are very difficult to evaluate in any
case. But the estimates presented in this paper, based on
error sequences of length £ < L., are easily formed
finite sums. These estimates are useful in finding good
convolutional codes, and in predicting error statistics.

Good codes are needed for each different measure of
distance on a channel. These good codes can look sur-
prisingly different from codes designed for binary chan-
nels—the best code of fixed constraint length for the very
noisy wideband noncoherent MFSK channel simply sends
each input bit to the transmitter K times in K positions.

More work is needed to compile a list of good codes
for all commonly used M-ary channels.
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Table 1. Best known rate 1/2 convolutional codes (a) and previously tabulated codes (b) with error probability

estimates based on error sequences with { < K, on the orthogonal 4-ary channel

K (hexfdoedc?mal) P estimate P estimate Type
2 2 3 D2 + D3 D2 + 2D3 a,b
3 5 7 D3 + 2D* + - .- D3 4+ 4D% + .- a,b
4 A D Dt +4D5 + .- D* + 10D5 + - a
4 D F 2Dt + 3D% + .- 3D+ + 8D5 + .- b
5 12 1F 2D5 + 3D¢ + .. 38D% + TD8 + -- a
5 13 1D 3D5 + 2D8 + ... 6D5 + TDS + ... b
6 2E 3D 2ps + 8D7 + .- 3Ds + 25D7 + .- a
6 2B 3D 4D¢ + 8D7 + .- 10D8 + 21D7 + - b
7 52 6D 4D + 8D8% + .- D7 + 27D8 + a

7 5B 79 D$ + 4D7 4+ 7D8 + .. D¢ + 10D7 + 24D8 + ... b
8 AD DF 6Ds + 12D° + .- 17D8 + 49D? + a

8 A7 F9 2D7 4+ 3D% + 12D° + .-~ 5D7 + 6D8 + 43D° + b

9 172 19F D8+ 7D°% + - 2D8 + 22D% + ... a

9 171 1EB 2D8 + 5D + ... 4D8 + 16D° + --- b
10 2DD 312 2D% + 8D + ... 3D% + 37D + ... a
10 277 365 Ds + 3D° + 8D + ... D8 +7D° + 27D10 + ... b
11 5AD 73F 3D10 + 18D11 + ... 5D10 4+ 70D + ... a
11 4DD 7B1 D& + D® + 3D + 20D + ... 3D% + 2D% + 6D10 + 95D11 + ... b
12 A4F DAD 9Dt + 20D12 + ... 27D + 113D%2 + ... a
12 8DD BD3 3D + 8Dt + 26D12 + .. 6D10 + 42D11 + 128D + ... b
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Table 2. Rate 1/3 convolutional codes and error probability estimates: (a) best
codes found by procedure in text, (b) previously known codes

K Code (hexadecimal) P, estimate P estimate Type
3 5 7 4 D3 + D+ + 2Ds D3 + 2Dt + BDs a
3 5 7 7 D3 +2D* + D5 D3 + 4Dt + 3Ds b
4 A D 9 D+ + D5 + 3D¢ + .. D+ + 2D5 + 8D& + .. a
4 B D F D+ + D5 + 3D¢ + .. D+ + 2D5 + TDS + .. b
5 12 1F 14 D5 + D¢ + 4D7 + .. D5 + 2D¢ + 11D7 + .. a
5 15 1B 1F D3 +2D8 + 2D7 + .. D5 + 4Ds + 6D7 + -. b
6 2FE 3D 24 D¢ + D7 + 5D8 + .. Ds + 2D7 + 13D% + .. a
6 27 2B 3D Ds + 2D +3D8 + -. Ds + 5D7 + 10D%8 + -- b
7 52 6D 46 D7 +2D8% + 4D% + ... D" + 4D8 + 15D% + .. a
7 5B 65 7D 2D +2D8 4+ 5D + ... 3D" + 7D® + 18D°® + .. b
8 AD DF 99 D& + 2D° -+ 7D + ... D8 + 5D° -+ 22D10 + ... a
8 95 D9 F7 D# + 3D¢ + 5D10 + ... D& + TD® + 15D10 4 ... b
9 172 19F 134 D?® + 2D10 + 8D1t 4 ... D% + B5D10 4 29D11 + ... 2
9 16F | 1B3 1C9 D¢ + 2D 4 8D11 + ... D¢ + 5D + 26D + ... b
10 2DD 312 27B D10 + 5D11 + 4Dz + ... D10 + 14D11 + 14D12 + ... a
10 24F 2F5 39B D10 + 6D11 + 3D12 + ... Dio + 19D + 10D22 + ... b
11 5AD 73F 474 D1t + 5D12 + 8D13 4 ... D11 + 14Dz + 28D13 + ... a
11 56B 5B9 67D 2D11 + 8D12 + 4D138 + ... 4D11 + 28D12 + 15D13 + ... b
12 A4F DAD 959 D1z + D13 + 9D1¢ + ... D12 + 16D + 37D + ... a
12 9F7 BD3 CB5 D11 + 6D18 + 9D + ... D11 + 16D138 + 32D14 + ... b
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k PARALLEL K-BIT SHIFT REGISTERS

k INPUTS
DATA (OR ONE kK=-BIT SHIFT REGISTER
SOURCE SHIFTING k BITS AT A TIME)
. & 8
ADDER 1
+
¢
e o ¢
ADDER 2
[
. 1 OF M=2Y 10
o e o . . SYMBOL CHANNEL
. . SELECTOR AND [t
. TRANSMITTER
CONNECTIONS
DETERMINE
CODE
ADDER v

Fig. 1. A rate k/» convoiutional coder for the M-ary channel with M = 2v, drawn for k = 2
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Fig. 2. Estimates of P, vs D, for rate 1/2 codes on 4-ary channel
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Fig. 3. Estimates of P, vs D, for rate 1/3 codes on 8-ary channel
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Fig. 4. The best convolutional codes of constaint length K on the

M-ary orthogonal channel, achieved by allowing » to increase to
v = K, whileM = 2v
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Fig. 5. Dependence of best P, vs D, curves on », withM = 2V, forK = 3,7, 11
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Fig. 6. D, vs signal-to-noise ratio ST/N, for noncoherent MFSK and the two
asymptotic approximations
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